Relativistic Variable Eddington Factor in a Relativistic Plane-Parallel Flow

نویسنده

  • Jun Fukue
چکیده

We examine the behavior of the variable Eddington factor for a relativistically moving radiative flow in the vertical direction. We adopt the “one-tau photo-oval” approximation in the comoving frame. Namely, the comoving observer sees radiation coming from a closed surface where the optical depth measured from the observer is unity; such a surface is called a one-tau photo-oval. In general, the radiative intensity emitted by the photo-oval is non-uniform and anisotropic. Furthermore, the photo-oval surface has a relative velocity with respect to the comoving observer, and therefore, the observed intensity suffers from the Doppler effect and aberration. In addition, the background intensity usually depends on the optical depth. All of these introduce the anisotropy to the radiation field observed by the comoving observer. As a result, the relativistic Eddington factor f generally depends on the optical depth τ , the four velocity u, and the velocity gradient du/dτ . In the case of a plane-parallel vertical flow, we found that the relativistic variable Eddington factor f generally decreases as the velocity gradient increases, but it increases as the velocity increases for some case. When the comoving radiation field is uniform, it is well approximated by 3f ∼ 1/[1+(16/15)(−du/γdτ)+(−du/γdτ)1.6−2]. When the radiation field in the inertial frame is uniform, on the other hand, it is expressed as f = (1+3β)/(3+ β). These relativistic variable Eddington factors can be used in various relativistic radiatively-driven flows, such as black-hole accretion flows, relativistic astrophysical jets and outflows, and relativistic explosions like gamma-ray bursts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Eddington Factor in a Relativistic Plane-Parallel Flow

We examine the Eddington factor in an optically thick, relativistic flow accelerating in the vertical direction. When the gaseous flow is radiatively accelerated and there is a velocity gradient, there also exists a density gradient. The comoving observer sees radiation coming from a closed surface where the optical depth measured from the observer is unity. Such a surface, called a one-tau pho...

متن کامل

Relativistic Variable Eddington Factor

We analytically derive a relativistic variable Eddington factor in the relativistic radiative flow, and found that the Eddington factor depends on the velocity gradient as well as the flow velocity. When the gaseous flow is accelerated and there is a velocity gradient, there also exists a density gradient. As a result, an unobstructed viewing range by a comoving observer, where the optical dept...

متن کامل

Milne-Eddington Solutions for Relativistic Plane-Parallel Flows

Radiative transfer in a relativistic plane-parallel flow, e.g., an accretion disk wind, is examined in the fully special relativistic treatment. Under the assumption of a constant flow speed, for the relativistically moving atmosphere we analytically obtain generalized Milne-Eddington solutions of radiative moment equations; the radiation energy density, the radiative flux, and the radiation pr...

متن کامل

Velocity-Dependent Eddington Factor in Relativistic Radiative Flow

We propose a variable Eddington factor, depending on the flow velocity v, for the relativistic radiative flow, whose velocity becomes of the order of the speed of light. When the gaseous flow is radiatively accelerated up to the relativistic regime, the velocity gradient becomes very large in the direction of the flow. As a result, the radiative diffusion may become anisotropic in the comoving ...

متن کامل

Calculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.

In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009